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Abstract

In complete markets, pricing financial products is easy (at least fromaaeteal point of
view). In incomplete markets (e.g. when the underlying process has jumpsanidbom size,
such has an insurance loss process), the price is no longer uniquen tBe one hand, it
becomes difficult to provide a tractable price of insurance-linked daresa On the other
hand, when facing catastrophic losses, using the pure premium as enggldanot be relevant
(e.g. for solvency issues). Both financial market and (re)insuramhestry have proposed
techniques to price identical hedging products that can be related (schdgsransform and
more generally distorted risk measures in insurance, Gerber-Shiuanansf finance). In
this paper, we focus on indifference utility techniques, assuming that ptams have jumps,
related to major catastrophic losses, and thus, partial hedging shouldeipasdible.

1. Introduction and motivations

1.1. Notations and definition

The buyer of an insurance contract buys the right to get refgda - by the insurance company -
all the losses which occurred during a given period of tirfa, Which the loss amount exceeded a
deductible, if any). The buyer of a call options buys the trighbuy the underlying stock from the
seller to capture its increased value above the strike.price

Both (financial) options and insurance policies have theativge to transfer a risk from one
part to another, against a specific payment (called premiunsurance). But classical techniques
in insurance (based on the use of the pure premiipi(X — d).)) and finance (based on the
assumption of complete market and no-arbitrage, so tharibe of a call option i€q (X —K)))
are no longer relevant.

On the one hand, most of the techniques designed to priceaimseicontracts have been devel-
oped for standard risks, not to hedge against catastroph@sng reinsurance, where events are
rare and with high severity, is more challenging, and theisifige pure premium might not be rel-
evant, for solvency issues. On the other hand, the closed+fwodel for pricing financial options
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obtained in the beginning of the 70’s, assumed that a vityatif the underlying stock was avail-
able, known and constant, and that the underlying price wairmious. Those two assumption
assumptions were related to the ideaompletemarkets.

The challenge in insurance-linked derivatives is find agfr those financial products, and to
relate them to classical insurance covers, since quessiadaby any risk manager isvhich risk
transfer technique is the cheapest dtie But, as mentioned in Finn and Lane (1995), one has to
keep in mind, there are no right price of insurance, there is simply thentacted market price
which is high enough to bring forth sellers and low enough thuite buyers From a terminology
point of view, Holtan (2007) suggested to distinguish piniee of an option or thggremiumof an
insurance contract, and the so-call@dueof those products. The difference depending mostly on
market conditions.

1.2. Trading insurance risks

Insurance risks are traded as long as there are insuranttaasnbuyers and sellers, but they are
traded within the (re)insurance markatly. To compare with the financial market, derivatives are
traded on structured market, as well as the underlying stekilch will make replication possible
(and therefore hedging and pricing derivatives). In thesaafsinsurance risks, we can image
that some standard contracts could be - somehow - concludbdimancial companies, but the
underlying risk (cumulated insurance claims for indemuoiyers, or weather related index) is not
traded on financial market: in that case, there is few chdraterisurance risks could be replicated,
and therefore classical techniques to price are no londier. va

Assuming that financial markets integrate information dlwagiastrophes (are more generally
any insurance related information), it might be possibleadge insurance risks on financial mar-
kets. But most of the assumptions underlying the Black & Sahaksumptions are usually not
fulfilled with insurance-linked derivatives

¢ the market is not complete, and catastrophe (or mortab) cannot be replicated,

¢ the guarantees are not actively traded, and thus, it is diffic assume no-arbitrage

the hedging portfolio should be continuously rebalanced,there should be large transac-
tion costs

if the portfolio is not continuously rebalanced, we introdwan hedging error

equities prices are not driven by a geometric Brownian mqgti@mtess

The goal of this paper is to focus on catastrophe options@fidd a price for those financial
products.

1.3. Ouitline of the paper

In Section 2, classical results on financial pricing will ealled, focusing on assumptions un-
derlying thefundamental theorem of asset pricinbhen, in Section 3, classical insurance pricing
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methods will be presented (based either on expected ygiiibciples or using distorted risk mea-
sures). In Section 4, classical financial method to avoidvbeeks of uncompleteness will be
presented (and related to insurance pricing), to dipdssible martingale measure.

And finally, in Section 5, we will study a model based on ingliéfnce utility pricing. The un-
derlying idea is that financial markets can be affected bglsheelated to major insurance losses.
As mentioned in Shimpi (1995) with a qualitative point ofwjeéfrom an insurance industry per-
spective, the closer the index is to the loss experiencebékter the ability to hedge the loss
exposure of insurefs Even, if a stock price is not perfectly correlated withunance losses, at
least its discontinuous part can be. The goal here will beeéoifsthose jumps in financial prices
can be used to hedge again catastrophes.

2. Pricing financial products in complete markets

Harrison and Pliska (1981) said that a marketampletef there is only one equivalent martingale
measure to the underlying stock price. Insurance marketgdaoe complete if the would be

a unique price for each risk, and if each contract could p#yfdoe hedged in the market. As
mentioned in Embrechts and Meister (1997) market uncompésts can be explained by jumps
in the underlying stochastic process, with random size tdghsstic volatility, or by the existence
of transaction costs (or more generally dngtion). Hence, in complete markets, all relevant
market information is supposed to be known and integratatarprice: no investor will expect

a higher return than the risk free rate of return. The tealmig to tune the historical probability

P into an equivalent probability measut® so that the price process of the underlying financial
asset becomes a martingale under probabdlityi.e. Eq(S:;+n|F:) = S;. Hence, it becomes
impossible to use history of the stock to earn money: all iptessselevant information is already
included in the its spot price. This link between no-arlgjgassumption and martingale processes
is thefundamental theorem of asset prici(gee Delbaen and Schachermayer (1994)): the price
of a contingent claimX (e.g. the payoff of the European call with striké and maturity? is

X = (Sr — K)y)is7m(X) = Eg(e "' X), assuming constant risk free ratewhereQ stands for
therisk neutral probability measure equivalentfto

The Black & Scholes model assumes that the price of a riskyt &Ssg-, satisfiesS;, =
Sp exp (X;) where (X;);>o is a Brownian process, i.eS; = Syexp (¢ + o X?) where (X?);>o
is a standard Brownian motion. Having a geometric Brownianionateflecting uncertainty on
financial markets (for stock pric€s))) yield simple and nice pricing formulas. The most difficult
practical issue is that the only unknown valuation paramstie stock volatilityr, making option
dealers simply Volatility dealers: the value of the a financial option depends on the volgtdit
the underlying financial stock, and not its expected retwimi¢h has to be equal to the risk free
rate of return), leading to aisk neutral” pricing.
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3. Pricing insurance products

The basic principle of insurance is the law of large numbiétbe premium asked iEp(X), then
the insurance company makes a null prafit,average Feller (1945) calledr(X) thefair price

(of agame, in his terminology). In the terms of d’Alembelnt pure premium is theriner product

of probabilities and lossés Thus, Ep(X) is called pure premium, but using it as the price of a
risk, the company is very likely to lose money (since the hedais onlyon average Therefore,
traditional premium calculation principles are

m(X) = Ep(X): equivalence principle (pure premium)
m(X) = Ep(X) + AEp(X): expected value principle

7(X) = Ep(X) + AVarp(X): variance principle

m(X) = Ep(X) + A/ Varp(X): standard-deviation principle

Remark 3.1 For the standard-deviation principle, X has a Gaussian distribution, ther{X) is
simply a quantile ofX.

3.1. Pricing using expected utility principles

The fact that the pure premium might not be appropriate has b@ention starting from Saint-
Petersburg’s paradox. One of the answer was to introduceral utility of X. A utility function
U is an increasing twice differentiable function &n strictly increasing@’(-) > 0, i.e. “more is
bettef’) and concave{”(-) < 0, i.e. “marginal utility decreasé¥. Concavity is related to risk
aversion; since we assume that the agent is willing to tearasfisk, it is relevant to assume tliat
IS concave.

Example 3.1 Three types of expected utility are frequently used in tmeesth of expected utility,

Vo e RY,UL(z) = log( ): logarithmic utility
Ve e Ry, Up(x) =% Wherep €] — 00, 0[U]0, 1[: power utility
Vo € R, Ug(x) = —exp(——) exponential utility

FunctionsUp and U}, belong to the set of functions have constant relative rigksion (CRRA).
FunctionsUg belong to the set of functions have constant absolute risksean (CARA).

Given utility functionU, the premiumr that an agent is willing to pay to transfer lo&Ssis a
solution of the following equation

Ulw =) = Ep(U(w — X)) (1)

wherew denotes initial wealth of the insured. Using Jensen’s iaétyu(sincel is assumed to be
concave), note that > Ep(X).

Example 3.2 Assuming exponential utility, i.eU(z) = —e~2/?0 (with constant risk aversion
1/10), thenm = x4 log Ep(eX/™) (also called entropy measure).
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Borch (1962) observed that the price of reinsurance comstralstained with HARA utility
functions (more general than CARA and CRRA) is quite similar tofih@ncial formulas: This
indicates that the theory of insurance premiums and thertheasset prices are special cases of
a more general theoty This emphazises the idea that it should be possible tberélaurance and
finance valuation techniques.

3.2. Pricing using distorted risk measures

Using the duality principle (see Yaari (1987)), instead istafting losses using a utility function,
an alternative is to use a distortion of probabilities (legdo thedualapproach, since the expected
value can be seen as an inner product, as mentioned alrealbynbert). Hence, the agent solve
the dual version of Equation (1), i.e. (with an abuse of notato highlight duality, see Remark
3.2)

w—1=Esp(w—X) :/(w—x)goP(dx), 2

or equivalently,m = /xgoIP(da:) = /g(IP(X > z))dz in the caseX is a positive random

variable, whergy is adistortion measure, i.e. an increasing function [onl1], with ¢(0) = 0 and
g9(1) = L.

Remark 3.2 Note that this probability distortion does not necessarigfige a probability mea-
sure, but only aapacity if Q = g o P, Q(&) = 0 (sinceg(0) = 0), Q(2) = 1 (sinceg(1) = 1),
andQ(A) < Q(B) if A C B (sinceg is an increasing function). Hence, in Equation @).p is
not an expected value, but a Choquet integral with respectdndgdditive) measurg o P.

Example 3.3 If g(x) = 1(z > ), thent = F7(1 — a),a € (0,1) and F(z) = P(X < z).

As a particular case of distorted probabilities, an imparfainciple is the use of the Esscher
transform,

E]}D(X . eO‘X)
=FEp(X)=—+———
m Q( ) ]E[p(eax)

for somea > 0. More generally, Delbaen and Haezendonck (1989) considie following
change of measure, so that cumulative distribution functbd the Radon-Nikodym derivative
dP/dQis

Gla) = gy [ 0B ).a >0

where F' is the distribution function ofX underP, and3(:) : [0,00) — (—o00,00) satisfies
Ep(e?X)) < 0o andEp(X e X)) < oco.

Example 3.4 If 8(x) =log (1 + b (x — Ep(X)))), thenm = Eg(X) = Ep(X)+bVarp(X), which

, . . Ep(X - eaX
is the variance principle. 1B(x) = az—log Ep(e®X), for somex > 0, thenr = Eqg(X) = %
ple”
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4. Pricing financial products in incomplete markets

4.1. Anatural framework based on Levy processes

As mentioned in Section 2, market uncompleteness arises thieeunderlying stochastic process
has jumps with random size. Hence, in a general framewodynas that the price of a risky
asset(S;):>o satisfiesS; = Syexp (X;) where(X;);>¢ is a Lévy process. Recall thatX;):>o
has independent, infinitely divisible and stationary imeeats, thusX,,, — X; has characteristic
function¢”. The cumulant characteristic function satisfies tieey-Khintchine formula, i.e.

1 oo
Y(u) =log d(u) = iyu — 202u2 + / (e“w —1-— iuwl{‘xkl}) v(dr),

wherey € R, 02 > 0 andv is the so-called vy measure oiR/{0}. Hence, the Evy process
is characterized either by (the characteristic function oX,), or by the triplet(v, o2, v) in the
Lévy-Khintchine formula.

Remark 4.1 Again, except the case whéR,),> is a (pure) Poisson process or a Brownian mo-
tion, any Llevy model is an incomplete model.

Market completeness is related to the existencewfiguemartingale measure, also called the
predictable representation propertf a martingale: a martingal@\/;);~, satisfies this property
if and only if for any square-integrable random variablec Fr, there exists &;-predictable
process(a;):cjo,r] Such thatZ = E(Z) + fOT asdM,. Actually, (a;):co, is related to the self-
balancing strategy. Nualart and Schoutens (2000) provatdutider some weak assumptions, a
Lévy proces$X;):>o can also have predictable representation propertf the form

LT
2+Y / aPd(HO — E(HD)),
i=1 70

where the(ati )ico,r)'S areF-predictable processes, aﬁ({iz >0 <S<t[X — X,-]', where times

s are times where thedvy process jumps. As mentioned in Schoutens (2003), thdigatde
mtegrands(at )ecfo,r)'S @appearing in this representation can be interpretedrmseof minimal
variance strategies. Hence, those processes correspadine tisk that cannot be hedged away.
The term(a{"),~, leads the strategy that realizes thesestedge to the claim.

A first idea, related to the classical pricing process in detepmarket is to find an equiva-
lent martingale measure, and to use it to deriyaiae. Hence, in Section 4.2 we will mention
two ideas widely used to obtain one equivalent martingalasue(): one based on Gerber and
Shiu (1994) (i.e. Esscher transform from insurance pricargd the other one based on some
mean-correcting martingale measuréhe main problem in incomplete market is that there is no
replication portfolio. But it is still possible to super-tagate.
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4.2. Finding one risk neutral measure
4.2.1. USING THE ESSCHER TRANSFORM

Following Gerber and Shiu (1994) we can - by using the Esstthasform - find in some cases
at least one equivalent martingale measreMore generally, Bhimannet al. (1998) discussed
the Esscher transform for specific classes of semi-matgsgavith applications in finance and
insurance.

Given a Levy process X;):~o underP with characteristic functio or triplet (-, o2, v), then
under Esscher transform probability measre(as defined in Section 3.2)X;):>o is still a Levy
process with characteristic functign such that

log ¢o(u) = log ¢p(u — i) — log ¢(—icv),
and triplet(v,, o2, v,) for X, wheres? = o2, and

+1
Yo =7 + 0 +/ (e — 1)v(dz) andv,(dz) = e*v(dx),

-1

see e.g. Schoutens (2003).

Example 4.1 A particular case is given whefiX;);>o is a Brownian motion undeP, then if
a = (r—u)/o?, (X;)i>o is still a Brownian motion undeg,,.

Proposition 4.2 If the price of a risky ass€tS;),> satisfiesS; = Sy exp (X;), where(X;):>o is a

Lévy process, such that random varialeis non-degenerate and possesses a moment generating
function M (t) = Ep(e'*) on some intervala,b), and if there exists, € (a,b — 1) such that
M(1+u) = M(u), then(e™"S;);>0 is aQ,-martingale.

Proof. Shiryaev (1999) ]
In order to have unicity, additional assumptions are neosggsee Kallsen and Shiryaev (2002)).

4.2.2. AMEAN-CORRECTING MARTINGALE MEASURE

Another way to obtain an equivalent martingale measurespiiad from the Black & Scholes
model, and is related to somgean-correcting martingale measufehe underlying idea is to note
that given a [evy proces$X;);>, underP with characteristic functios and triplet(v, o2, v), then
the shifted procesgY;):>o = (X: — mt);>o iS also a lévy process with characteristic function
O (u) = €™ ¢(u) and triplet(~,,, o2, v,,) = (v + m, 0%, v) for X;, see e.g. Schoutens (2003).

In the Black and Scholes model, we just switch from mganos?/2 tor — o/2. In the Levy
model, the idea is to use the same kind of transform,, = moqg + r — log ¢(—i) (in the Black
and Scholes modédkg ¢(—i) = «). The choice ofnney Will be such that the discounted price is a
martingale.
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5. IThe indifference utility approach

As point out in Swiss Re (1999), about the pricing of finandiapdoss contractsthe risk-neutral
valuation technique traditionally used for the pricing aidncial derivatives cannot be applied
directly’. Nevertheless, practitioners neagbrice for insurance-linked derivatives.

Let (S¢)¢>0 denote the accumulated insurance claim proc€sss Zf.vztl X,. The classical
stop-loss contradtS — K) .. The payoff of a call option is alsgS; — K),. Hence, those two
covers are identical for an insurance company, willinganmsfer risk claims exceeding priorify.

The idea of the pricing model here is to assume that the pfitgedinancial asset has jumps
related to the occurrence of catastrophes. This assumgaiote validated by stylized facts, e.g.
stock price of reinsurance companies and WTC 9/11 in 2001Kgpee 5, with Munich Re and
SCOR - European markets since Wall street has been closedledfteatastrophe), oil price and
Katrina in August 2005... etc.

Impact of WTC 9/11 on stock prices (Munich Re and SCOR)

60

55
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1
350

50
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300

Munich Re stock price
40

35

30
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2001 2002

Figure 1. Catastrophe event and stock prices.

The following model and results are based oreé@aet al. (2007).

5.1. Description of the model

The occurrence process ig.4; )-adapted process denoted; );>o. UnderP, assume thatV;):>o
Is an homogeneous Poisson process, with parameta. with stationary and independent incre-
ments. Further, recall thlit,(Ny) = AT andVar(Ny) = AT.

At time ¢ that number of catastrophe that had already occurréd.iDefine the sequence of
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stopping timeg7},),,>o corresponding the dates of occurrence of catastrophes, i.e
T5=0 andTn+1 = inf {t | t > Tn7 Ny 75 NTn} .

Let (M,);>o be the compensated Poisson process\of;>o, i.e. M; = N; — At.

Theith catastrophe has a loss modeled has a positive randorbleafia-measurable denoted
X;. Variables(X;);>, are supposed to be integrable, independent and identiiatiyouted. De-
fineL; = Zj\ﬁl X, as the loss process, corresponding to the total amountadtcaphes occurred
up to timet.

Assume that financial market satisfies the no-arbitragengsson, and consists in a free risk
asset, and a risky asset, with pric&),~,. Without loss of generality, the value of the risk free
asset is assumed to be constant (hence it is chosen as a mandrae price of the risky asset is
driven by the following diffusion process,

S, = Si (udt + odW, + £dM,) with S = 1

where(W};);>o is a Brownian motion unddf, independent of the catastrophe occurrence process
(N;)¢>0. Parameters ando? are respectively the trend and the volatility of the riskgeds per
time unit. Parametef corresponds to the relative variation of the asset valuenittjgmps.

Note that the stochastic differential equation has the@valg explicit solution

0.2
St = exXp |:(/L— 7 — )\f)t+0-wt:| (1 +§)Nt

5.2. Indifference utility

As in Davis (1997) or Schweizer (1997), assume that an iovdsds a utility function/, and
initial endowmentu. The investor is trading both the risky asset and the risk &igset, forming a
dynamicportfolio 6 = (é;):>0 Whose value at timeis I, = II, + f(f 0,dS,. =g+ (6-S); where
(6 - S) denotes the stochastic integraléofvith respect taS.

A strategyo is admissible if there exists/ > 0 such that? (Vt €[0,7],(0-5) > —M) =1,

and further ifEp [fOT 6§Sf_dt} < +o0.
If X is a random payoff, the classical Expected Utility basedrnwen is obtain by solving

ww, X)=U(w—m) =Ep(U(w— X)).
Consider an investor selling an option with payéffat timeT’,

e either he keeps the option: (w, 0) = supsc 4 Ep [U(w + (6 - S)T)} :

e either he sells the optiofs (w + 7, X) = sups. 4 Ep [U(w +(6-8)r — X)] .

The price obtained by indifference utility is the minimumgersuch that the two quantities are
equal, i.e.
m(w, X) = inf {7 € R such thatus(w + 7, X') — us«(w,0) = 0} .
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This price is the minimal amount such that it becomes intergs$or the seller to sell the option :
under this threshold, the seller has a higher utility kegpie option, and not selling it.

Based on optimal control results, @uaet al. (2007) derived some analytical expression, that
can be related to Merton (1976), in the case of exponeniidjut

5.3. Following Merton’s work

Assume that the asset has no jump, i&5;, = S;-(udt + odW,) (i.e. £ = 0), and that we
wish to price a derivative with payoff(Sr), then in the case of exponential utility; (¢, 7) =

Up |7+ £2(T - 1))
In the case where the asset has jump,d®. = S;- (udt + odW, + £dM,) (i.e. £ # 0), and
that we wish to price a derivative with payaffSr), thenug(t,7) = Ug (7 + (T' — t)C) where

C'(t) satisfies

3

C(t) = %2 + (a — % — EN)D — 7-0°D?
Ozf)\—a—i-;—ZD—f)\exp[—%] ’

with also a border conditior(;(7") = ¢(Sr), and whereD is related to the optimal strategy, and
Is obtained also from the previous system.

Here, we wish to price a derivative with payeftLr), when the underlying asset has jumps.
Then, assuming that the investor has an exponential ulility) = — exp(—z/xy),

Theorem 5.1 Let ¢ denote aC? bounded function. If utility is exponential, the value ftioic
associated to the primal problem,

u(t,m,s,1) = Igleaﬁ(]Ep [U(HT - (b(LT)) \ ft]

does not depend onand can be expressed a§&, 7,[) = U(w — C(t, l)), whereC' is a function
independent of satisfying

o?s0* so* + C(t,1 a1
0 = E\—pu+ ~exexp| - f—()}EP (es5e0)

oC T xg 1 "

_ — _O - * - 2 *\ 2

5 (t,1) : + (p : EN)so 21’00 (s6™)

o) = o)
whered* denotes the optimal control.
Proof. Theorem 19 in Qamaet al. (2007). |

5.4. Numerical issues and properties of optimal portfolios

From theorem 5.1 we have to fiid', ¢), i.e. 2 functions solutions of an integro-differential equ
tion. Hopefully, using a simple discretization on a finitedgit is possible to obtain a (stable)
numerical approximation af', and therefore of functiof, and thus of the price of the derivative.
Note further that ywo nice results have been derived igiQaet al. (2007),
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Lemma 5.2 C(t,-) is increasing if and only if is increasing.

Lemma 5.3 If ¢ is increasing and: > 0, then the optimal amount of risky asset to be hold when
hedging is bounded from below by a strictly positive cortstan

For a numerical example, assume that the trend is pu# (), i.e. amounts hold are uniquely
explained by the hedging strategy. Prices are decreasing, iand therefore, increasing with
risk aversion (the higher,, the lower risk aversion). When, — 0, risk aversion is infinite,
and thus, whatever appends, the agent wants to hedge agaynkisses: the price tends to the
super-replication price i.d]¢|| ., since if he holds underlying, he might loose money.

a

Loi Exponentielle(1)

3.8 -

Loi Pareto(1,2)

3.6 |

3.4

3.2

3k

28 |- -

2.6 |- -

2.4

Figure 2: Price as a function of the risk aversion coefficienwith 7 = 1, y = 0, 0 = 0.12,
A=4,£=0.05andB =4
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